Tuesday, January 24, 2023

Python Turtle Graphics Drawing - PlayStation Logo

 Python Turtle Graphics Drawing - PlayStation Logo

Youtube


Source code:

from turtle import *
from math import atan2,degrees

setup(650,550)

def cbezto(b,c,d):
    a=pos()
    t = 0.0
    while t <= 1.0:
        t3 = t**3
        t2 = t**2
        f1 = -t3+3*t2-3*t+1
        f2 = 3*t3-6*t2+3*t
        f3 = -3*t3+3*t2
        f4 = t3
        x = a[0]*f1 + b[0]*f2 + c[0]*f3 + d[0]*f4
        y = a[1]*f1 + b[1]*f2 + c[1]*f3 + d[1]*f4
        d1 = -3*t2+6*t-3
        d2 = 9*t2-12*t+3
        d3 = -9*t2+6*t
        d4 = 3*t2
        dx = a[0]*d1 + b[0]*d2 + c[0]*d3 + d[0]*d4
        dy = a[1]*d1 + b[1]*d2 + c[1]*d3 + d[1]*d4
        angr = atan2(dy, dx)
        seth(degrees(angr))
        goto(x, y)
        t += 0.05
    goto(d)


up()
lt(108.1)
fd(225.2)
down()
begin_fill()
lt(161.9)
fd(399)
lt(72.7)
fd(94.3)
lt(107.3)
fd(338)
cbezto((22,155),(56,150),(56,113))
rt(5.5)
fd(137)
cbezto((129,-55),(163,-8),(156,70))
cbezto((150,152),(81,170),(57,179))
cbezto((15,194),(-36,208),(-70,214))
end_fill()

up()
lt(117)
fd(384.8)
down()
begin_fill()
rt(16.2)
fd(52)
lt(109.8)
fd(109)
cbezto((210.5,-143),(284.5,-129),(276.5,-95))
cbezto((269,-70),(194.5,-49.5),(140,-50))
cbezto((98.5,-49.5),(55,-61),(37.5,-67.5))
lt(71)
fd(54.5)
lt(109.7)
fd(95)
cbezto((157.5,-77.5),(198,-81.5),(197,-93))
cbezto((196.5,-102),(167.5,-108.5),(138,-119.5))
rt(0.1)
fd(106.8)
end_fill()

up()
rt(65.5)
fd(179.3)
down()
begin_fill()
lt(135.8)
fd(52.5)
rt(70.4)
fd(68.5)
cbezto((-174,-111.5),(-203,-117),(-192.5,-128.5))
cbezto((-179,-137.5),(-144.5,-135),(-124.5,-126))
rt(1.3)
fd(39.4)
rt(110)
fd(47)
rt(79.4)
circle(-301.2,20.8)
cbezto((-232,-152.5),(-275,-142),(-277,-116))
cbezto((-279,-92),(-229.5,-78),(-170,-56.5))
lt(0.1)
fd(87.6)
end_fill()

up()
rt(44.8)
fd(387.2)
down()
lt(115.1)
pensize(3.5)
circle(19.5)
up()

fnt=('Arial',24,'bold')
color('black')
goto(243.5,-210)
write('R',font=fnt,align='center')

hideturtle()
done()

Thursday, January 19, 2023

Pyhton Turtle Graphics Drawing - OpenAI ChatGPT Logo

Pyhton Turtle Graphics Drawing - OpenAI ChatGPT Logo 

Youtube


Source code:

from turtle import *
from math import sin,cos,radians

setup (650,650)
bgcolor('#10A37F')
step = 360/6
x = cos(radians(42))*150
y = sin(radians(42))*150
up()
goto(x,y)
seth(42-60)
fd(150)
lt(90)
down()
color('white')
begin_fill()
for i in range(6):
    circle(150, 120)
    rt(60)
end_fill()

color('#10A37F')
a = 90
up()
begin_fill()
for i in range(7):
    x = cos(radians(a))*75
    y = sin(radians(a))*75
    goto(x, y)
    down()
    a+=step
end_fill()

a = 0
for i in range(6):
    up()
    goto(0, 0)
    seth(a)
    lt(132.9)
    fd(95.5)
    down()
    begin_fill()
    rt(42.9)
    fd(58)
    rt(59)
    fd(137.7)
    rt(0)
    circle(-113.9, 130.3)
    rt(110.4)
    fd(139.3)
    rt(5.7)
    circle(22.1, 66)
    rt(0.6)
    fd(166.2)
    end_fill()
    a+=60

hideturtle()
done()

Wednesday, January 18, 2023

Python Turtle Graphics Drawing - Mixue Logo

 Python Turtle Graphics Drawing - Mixue Logo

Youtube


Source code:

from turtle import *

setup(650,650)
bgcolor('#E40057')
color('black')

up()
rt(171.4)
fd(107.2)
down()
begin_fill()
rt(127.6)
circle(-54.9,29.1)
lt(29)
circle(-55.2,28.9)
lt(99.1)
circle(-97.9,84)
lt(0.4)
circle(-115.6,31.3)
lt(89.5)
fd(33.2)
lt(47.2)
circle(-18.8,254.5)
lt(52.7)
fd(10.6)
lt(103.3)
fd(8.6)
lt(72)
circle(-18.8,249.2)
lt(63.7)
fd(11.7)
lt(108.4)
fd(9.2)
lt(54.4)
circle(-19.1,254.1)
lt(40.6)
fd(29.7)
lt(99.1)
circle(-103.3,118.7)
lt(100.6)
circle(-32.7,60.1)
lt(42.6)
circle(-91.1,19.1)
lt(22)
circle(-186.4,22.4)
rt(4.4)
circle(-70.8,44)
lt(37.9)
fd(46.3)
lt(6.2)
circle(-27.3,84.5)
lt(1.1)
circle(-240.4,20.9)
lt(24.5)
circle(-186.8,59.3)
lt(26.3)
circle(-293.7,9.9)
lt(107)
fd(14)
rt(3)
circle(-13.8,165.3)
rt(9.2)
fd(26.2)
lt(69.8)
circle(-31.5,97.4)
lt(4.4)
fd(41.8)
lt(24.9)
fd(76.8)
lt(48.1)
circle(-61.3,50.7)
rt(2.7)
circle(-28.6,71.2)
lt(73.1)
fd(12)
lt(54)
circle(-18.7,77.6)
lt(70.6)
circle(-21.5,70.9)
lt(39.5)
fd(86.4)
lt(24.7)
fd(9.9)
rt(45)
fd(8)
lt(40.2)
circle(-27,86.7)
lt(58)
circle(-33.6,63)
lt(69.4)
circle(-36.4,97.3)
lt(4.7)
circle(-5.7,120.5)
rt(0.8)
circle(8.6,110.6)
rt(25)
circle(-30.1,80.8)
lt(69.4)
circle(-26,66.8)
lt(62.8)
circle(-21.9,79.3)
lt(39.8)
circle(-21.7,43.6)
lt(23.1)
fd(88.5)
lt(38.5)
circle(-20.4,65.3)
lt(63.4)
circle(-21,66.5)
lt(40.2)
fd(26.1)
lt(58.1)
circle(62,27.8)
end_fill()

color('white')
up()
lt(117.7)
fd(225.5)
down()
begin_fill()
lt(107.6)
circle(15.3,134.5)
rt(6)
circle(124,30.8)
lt(14.8)
circle(8.6,108.5)
lt(61.2)
circle(-9.7,69.4)
rt(98.1)
circle(16.5,104.7)
lt(89.1)
circle(-5.7,187.5)
lt(5.1)
circle(16.4,104.2)
lt(7.8)
circle(-25.6,57.8)
lt(103.3)
circle(27.7,83)
rt(88.9)
circle(21.9,120.7)
rt(106.4)
circle(-13.6,62.7)
end_fill()

up()
rt(155.4)
fd(211.1)
down()
begin_fill()
rt(14.8)
circle(146.5,26.8)
lt(83.7)
fd(8.1)
rt(29.6)
fd(31.4)
rt(79.3)
circle(8.9,321.7)
rt(68.8)
circle(-37.1,41.5)
rt(45.5)
circle(-28.4,63.1)
rt(66.4)
circle(8.4,310.7)
rt(64.6)
circle(-27,66.7)
rt(44.2)
circle(-34.8,46.8)
rt(63)
circle(8.9,321.8)
rt(85.2)
fd(31.3)
rt(10.4)
fd(9.1)
end_fill()

up()
rt(45.7)
fd(260)
down()
begin_fill()
lt(46.2)
fd(42.3)
rt(128.5)
circle(-27,103)
end_fill()

up()
lt(4.1)
fd(248.9)
down()
begin_fill()
rt(62)
circle(171.4,26.6)
rt(26.5)
circle(-98.2,78.8)
rt(12.7)
circle(-113.4,77)
lt(3.9)
circle(-115.9,82.6)
rt(12.6)
circle(-93.4,77)
end_fill()

up()
rt(133.8)
fd(237.7)
down()
begin_fill()
lt(102.9)
circle(81.2,33)
rt(37.6)
circle(106.2,57.6)
rt(46.1)
circle(86.7,29.4)
rt(51.7)
circle(121.9,50.4)
rt(48.6)
circle(-106.8,53.5)
lt(3.5)
circle(-22.9,86.4)
rt(112.1)
circle(75.9,40.4)
rt(21.1)
circle(3.7,198.3)
rt(11)
circle(-128.4,70.3)
rt(4.4)
circle(-177.9,58.9)
rt(2.6)
circle(-125.8,87.2)
lt(6)
circle(3.8,180)
rt(21.6)
circle(45.3,20.1)
rt(50.2)
circle(-14.1,62.3)
rt(34.8)
fd(49.5)
end_fill()

color('#FAC032')
up()
lt(14.7)
fd(183.3)
down()
begin_fill()
rt(123.3)
circle(120.8,32.9)
rt(118.6)
fd(82.5)
rt(16.7)
circle(-17,78.6)
rt(1)
fd(9.2)
rt(57)
fd(88.6)
end_fill()

up()
lt(177.6)
fd(99.9)
down()
begin_fill()
lt(55.2)
circle(35.1,49.2)
rt(118.9)
circle(-14.7,171.4)
end_fill()

up()
rt(179.3)
fd(22.6)
down()
begin_fill()
lt(69.7)
circle(54,28.1)
rt(111.2)
circle(-13.2,165.7)
end_fill()

up()
rt(163.6)
fd(22)
down()
begin_fill()
lt(59.9)
fd(11)
rt(83.5)
fd(264.7)
rt(5.7)
circle(-4.1,167.3)
rt(6.3)
fd(266.1)
end_fill()

color('#E80014')
up()
rt(116.6)
fd(72.1)
down()
begin_fill()
lt(69.6)
circle(-27.8,34.8)
lt(52.8)
circle(-35.5,43.2)
rt(67.9)
circle(122.4,30.5)
rt(143.4)
circle(-104,50.7)
end_fill()

up()
rt(153.7)
fd(165)
down()
begin_fill()
lt(12.3)
circle(109.4,33.3)
rt(71.7)
circle(-25.8,72.3)
lt(69.4)
circle(-38.4,26.6)
rt(109.4)
circle(-116.2,41.6)
end_fill()

up()
lt(63.6)
fd(273.8)
down()
begin_fill()
lt(60.8)
fd(39.3)
rt(134.5)
circle(-27.6,90.9)
end_fill()

up()
rt(91.6)
fd(84.5)
down()
begin_fill()
rt(149.7)
fd(30.4)
rt(73.4)
fd(48.4)
rt(168.5)
circle(119.3,31.1)
end_fill()

up()
lt(41)
fd(230)
down()
begin_fill()
lt(46.8)
circle(156.7,29.3)
rt(83)
circle(20.8,51.3)
rt(122.2)
fd(35.9)
lt(0.3)
circle(-22,86.2)
lt(6.6)
circle(-244.7,11.6)
end_fill()

color('#0C308E')
up()
rt(75.9)
fd(353.8)
down()
begin_fill()
lt(16.7)
circle(-30.3,85.3)
rt(7.1)
circle(-17,80.5)
rt(12.9)
fd(10)
rt(55.3)
fd(3.2)
rt(90)
fd(3.2)
rt(30.4)
fd(10.6)
lt(152.9)
fd(12.4)
rt(59)
fd(8.5)
lt(111.8)
fd(7.6)
rt(58.8)
circle(-23.1,51.1)
rt(0.2)
circle(-9.7,101.1)
end_fill()

up()
rt(123.2)
fd(71.1)
down()
begin_fill()
lt(116.9)
circle(-33.6,55)
lt(1.8)
circle(-15.2,119.1)
rt(3.3)
fd(7.2)
rt(60.3)
fd(2.2)
rt(63.4)
fd(2)
rt(48.8)
fd(10.6)
lt(157.2)
fd(12.6)
rt(68.6)
fd(7.8)
lt(110.4)
fd(8.1)
rt(60.6)
circle(-27,41.8)
rt(64.2)
fd(17.7)
end_fill()

up()
lt(88.3)
fd(57.9)
down()
begin_fill()
lt(108.7)
circle(58.7,52)
lt(12.6)
circle(-4.8,194.3)
lt(1.1)
circle(-70.4,50.8)
rt(0)
circle(-101.6,43.9)
lt(0.1)
circle(-5,184.7)
lt(2.5)
circle(86.2,47)
end_fill()

color('#F19601')
up()
lt(87.9)
fd(25)
down()
begin_fill()
lt(85.9)
circle(-20.1,171.9)
lt(0.1)
circle(-20.6,45.2)
lt(14.6)
circle(67.7,29.7)
rt(7.6)
circle(-4.3,143.1)
lt(17.9)
circle(-56.6,57.9)
end_fill()

color('#E60011')
up()
lt(26.3)
fd(52.8)
down()
begin_fill()
rt(9.4)
circle(-38.3,68.2)
rt(0.6)
circle(-16.2,106.3)
lt(3.2)
circle(-14.9,82.9)
rt(11.7)
circle(203.7,10.1)
end_fill()

color('#F29500')
pensize(5)
up()
rt(139)
fd(213)
down()
rt(161.4)
circle(130.5,23.5)

up()
rt(99)
fd(7.1)
down()
rt(56.2)
circle(-187.5,15.9)
up()
rt(96.8)
fd(21.2)
down()
rt(142.1)
circle(141.4,19.9)
up()
lt(171.8)
fd(47.2)
down()
rt(123)
fd(22.2)
rt(55.5)
fd(29.7)
up()
rt(70.3)
fd(18)
down()
rt(54.3)
fd(39.4)
up()
rt(97.4)
fd(14.8)
down()
rt(136.7)
fd(37.9)
up()
rt(63.4)
fd(7.1)
down()
rt(64.4)
fd(25.2)
up()
rt(97.1)
fd(11.2)
down()
rt(137.4)
fd(22.5)
hideturtle()
done()

Monday, January 16, 2023

Python Turtle Graphics Drawing - Xiaomi Logo

Python Turtle Graphics Drawing - Xiaomi Logo

Youtube


Source code:

from turtle import *

setup(580,580)
title('Xiaomi')
color('#F76400')

def bar(x, y, w, h):
    up()
    goto(x, y)
    seth(90)
    down()
    begin_fill()
    fd(h)
    rt(90)
    fd(w)
    rt(90)
    fd(h)
    rt(90)
    fd(w)
    end_fill()

up()
goto(-230, 250)
down()
begin_fill()
for i in range(4):
    fd(460)
    circle(-20,90)
end_fill()

color('white')
up()
goto(-145, -93)
seth(90)
down()
begin_fill()
fd(186)
rt(90)
fd(155)
lt(1.4)
circle(-52.8,88.4)
rt(3)
fd(136)
rt(90)
fd(46)
rt(90)
fd(120)
lt(0.7)
circle(27.4,84.3)
lt(5.1)
fd(93)
lt(90)
fd(147)
rt(90)
fd(45)
end_fill()

bar(-64,-93,46,114)
bar(100,-93,46,186)

hideturtle()
done()

Saturday, January 14, 2023

Python Turtle Graphics Drawing - BlackBerry Logo

Python Turtle Graphics Drawing - BlackBerry Logo

Youtube


Source code:

from turtle import *

setup(600,500)
bgcolor('black')
color('white')

def bb(x,y):
    up()
    goto(x,y)
    down()
    begin_fill()
    seth(257.5)
    fd(92.2)
    lt(102.5)
    fd(76)
    rt(1.1)
    circle(91.3,30.8)
    lt(6.4)
    circle(48.7,54.7)
    rt(0.5)
    circle(34.3,61.4)
    rt(0.8)
    circle(63.6,27.3)
    lt(1.8)
    fd(76)
    end_fill()

bb(-56,48)
bb(-216,183)
bb(-32,183)
bb(136,102)
bb(110,-38)
bb(-82,-93)
bb(-240,48)
hideturtle()
done()

Friday, January 13, 2023

Python Turtle Graphics Drawing - Yamaha Logo

Python Turtle Graphics Drawing - Yamaha Logo

Youtube


Source code:

from turtle import *

BLU = '#4B1E78'
title('YAMAHA')
setup(550, 550)


def fork():
    lt(90)
    fd(95)
    down()
    rt(90)
    begin_fill()
    circle(-12, 90)
    fd(252)
    lt(90)
    fd(24)
    lt(90)
    fd(252)
    lt(6.6)
    circle(53.9, 45)
    rt(16)
    circle(-21.5, 71.1)
    rt(9.5)
    fd(5.7)
    rt(2.7)
    circle(7.4, 67.4)
    lt(0.4)
    fd(55.4)
    rt(8.8)
    circle(2.5, 90)
    rt(22.6)
    circle(2.5, 90)
    rt(8.8)
    fd(55.4)
    lt(0.4)
    circle(7.4, 67.4)
    rt(2.7)
    fd(5.7)
    rt(9.5)
    circle(-21.5, 71.1)
    rt(16)
    circle(53.9, 45)
    lt(6.6)
    fd(252)
    lt(90)
    fd(24)
    lt(90)
    fd(252)
    circle(-12, 90)
    end_fill()

up()
fd(261)
down()
color(BLU)
lt(90)
begin_fill()
circle(261)
end_fill()
color('white')
up()
lt(90)
fd(11)
down()
rt(90)
begin_fill()
circle(250)
end_fill()
color(BLU)
up()
lt(90)
fd(28)
down()
rt(90)
begin_fill()
circle(222)
end_fill()
color('white')
N = 3
for i in range(N):
    up()
    goto(0, 0)
    seth(i*360/N)
    fork()
hideturtle()
done()

Tuesday, January 10, 2023

Python Turtle Graphics Drawing - React JS Logo

Python Turtle Graphics Drawing - React JS Logo

Youtube


Source code:

from turtle import *
from math import sin, cos, atan2, degrees, radians

'''
Draw Bezier Curve
'''
def cbezto(b, c, d):
    a = pos()
    t = 0.0
    while t <= 1.0:
        t3 = t**3
        t2 = t**2
        f1 = -t3 + 3 * t2 - 3 * t + 1
        f2 = 3 * t3 - 6 * t2 + 3 * t
        f3 = -3 * t3 + 3 * t2
        f4 = t3
        x = a[0]*f1+b[0]*f2+c[0]*f3+d[0]*f4
        y = a[1]*f1+b[1]*f2+c[1]*f3+d[1]*f4
        d1 = -3 * t2 + 6 * t - 3
        d2 = 9 * t2 - 12 * t + 3
        d3 = -9 * t2 + 6 * t
        d4 = 3 * t2
        dx = a[0]*d1+b[0]*d2+c[0]*d3+d[0]*d4
        dy = a[1]*d1+b[1]*d2+c[1]*d3+d[1]*d4
        angr = atan2(dy, dx)
        seth(degrees(angr))
        goto(x, y)
        t += 0.05
    goto(d)

'''
Rotate Point
'''
def rot(p, a):
    ang = radians(a)
    x = p[0] * cos(ang) - p[1] * sin(ang)
    y = p[0] * sin(ang) + p[1] * cos(ang)
    return (x, y)

setup(560, 560)
bgcolor('black')
color("#61DBFB")
up()
pensize(22)
#Bezier points
PTS = [
    [(242, 38),(172, 92),(-0, 92)],
    [(-172, 92),(-242, 38),(-242, 0)],
    [(-242, -38),(-172, -92),(0, -92)],
    [(172, -92),(242, -38),(242, -0)]
]
for i in range(3):
    ang = i * 60
    goto(rot((242, 0), ang))
    down()
    for j in range(4):
        p1 = rot(PTS[j][0],ang)
        p2 = rot(PTS[j][1],ang)
        p3 = rot(PTS[j][2],ang)
        cbezto(p1,p2,p3)
    up()

goto(45, 0)
seth(90)
down()
pensize(0)
begin_fill()
circle(45)
end_fill()
hideturtle()
bgcolor('white')
done()

Sunday, January 8, 2023

Python Turtle Graphics Drawing - Batman Logo

Python Turtle Graphics Drawing - Batman Logo

Youtube

Featuring: 

Bézier curve



Source code:

from turtle import *
from math import atan2,degrees
setup(750,450)

YEL = '#FFF800'
BLK = '#000000'

def cbezto(b,c,d):
    a=pos()
    t = 0.0
    while t <= 1.0:
        t3 = t**3
        t2 = t**2
        f1 = -t3+3*t2-3*t+1
        f2 = 3*t3-6*t2+3*t
        f3 = -3*t3+3*t2
        f4 = t3
        x = a[0]*f1 + b[0]*f2 + c[0]*f3 + d[0]*f4
        y = a[1]*f1 + b[1]*f2 + c[1]*f3 + d[1]*f4
        d1 = -3*t2+6*t-3
        d2 = 9*t2-12*t+3
        d3 = -9*t2+6*t
        d4 = 3*t2
        dx = a[0]*d1 + b[0]*d2 + c[0]*d3 + d[0]*d4
        dy = a[1]*d1 + b[1]*d2 + c[1]*d3 + d[1]*d4
        angr = atan2(dy, dx)
        seth(degrees(angr))
        goto(x, y)
        t += 0.05
    goto(d)


up()
lt(90)
fd(200)
down()
color(BLK)
begin_fill()
cbezto((203,198),(350,107),(350,0))
cbezto((350,-107),(203,-198),(0,-200))
cbezto((-203,-198),(-350,-107),(-350,0))
cbezto((-350,107),(-203,198),(0,200))
end_fill()

color(YEL)
up()
rt(93.1)
fd(10)
down()
begin_fill()
cbezto((208,188),(339,99),(340,0))
cbezto((339,-99),(208,-188),(0,-190))
cbezto((-208,-188),(-339,-99),(-340,0))
cbezto((-339,99),(-208,188),(0,190))
end_fill()

color(BLK)
up()
rt(93)
fd(331)
down()
begin_fill()
cbezto((21,-55),(81,-38),(107,-85))
cbezto((166,-17),(242,-75),(185,-129))
cbezto((391,-47),(323,106),(131,149))
cbezto((194,65),(91,23),(48,64))
cbezto((39,94),(36,127),(36,166))
lt(150.8)
fd(47.9)
rt(61.3)
fd(26)
rt(61.3)
fd(47.9)
cbezto((-36,127),(-39,94),(-48,64))
cbezto((-91,23),(-194,65),(-131,149))
cbezto((-323,106),(-391,-47),(-185,-129))
cbezto((-242,-75),(-166,-17),(-107,-85))
cbezto((-81,-38),(-21,-55),(0,-141))
end_fill()
hideturtle()
done()

Saturday, January 7, 2023

Python Turtle Graphics Drawing - New Balance Logo

Python Turtle Graphics Drawing - New Balance Logo

Featuring: 

Bézier curve

Youtube


Source code:

from turtle import *
from math import atan2,degrees

setup(500,500)
speed('slowest')

def cbezto(b,c,d):
    a=pos()
    t = 0.0
    while t <= 1.0:
        t3 = t**3
        t2 = t**2
        f1 = -t3+3*t2-3*t+1
        f2 = 3*t3-6*t2+3*t
        f3 = -3*t3+3*t2
        f4 = t3
        x = a[0]*f1 + b[0]*f2 + c[0]*f3 + d[0]*f4
        y = a[1]*f1 + b[1]*f2 + c[1]*f3 + d[1]*f4
        d1 = -3*t2+6*t-3
        d2 = 9*t2-12*t+3
        d3 = -9*t2+6*t
        d4 = 3*t2
        dx = a[0]*d1 + b[0]*d2 + c[0]*d3 + d[0]*d4
        dy = a[1]*d1 + b[1]*d2 + c[1]*d3 + d[1]*d4
        angr = atan2(dy, dx)
        seth(degrees(angr))
        goto(x, y)
        t += 0.05
    goto(d)


RED = '#E21836'

up()
lt(180)
fd(180)
down()
color(RED)
begin_fill()
rt(119.9)
fd(206.5)
rt(60.1)
fd(68.5)
rt(75.5)
fd(66.1)
lt(135.8)
fd(73.7)
rt(60.3)
fd(103.5)
cbezto((220,178),(195.5,105),(138.5,90.5))
cbezto((191,75),(152,0),(70,0))
rt(5.3)
fd(112)
rt(75.4)
fd(65.6)
lt(135.9)
fd(73)
rt(60.4)
fd(85.5)
end_fill()

color('white')
up()
rt(158.8)
fd(304.6)
down()
begin_fill()
lt(158.8)
fd(17.5)
rt(119.8)
fd(39.2)
rt(60.2)
fd(17.5)
cbezto((140.5,140),(132.5,109.5),(104,110))
end_fill()

up()
lt(57.8)
fd(38.7)
down()
begin_fill()
rt(63.1)
fd(20)
lt(60)
fd(41)
lt(120)
fd(21)
cbezto((98,41),(106.5,73.5),(86.5,75.5))
end_fill()

up()
rt(10.9)
fd(198.3)
down()
begin_fill()
rt(157.1)
fd(177.4)
rt(115.9)
fd(4)
rt(56.7)
fd(191.9)
rt(124.5)
fd(32.1)
end_fill()

up()
rt(176.4)
fd(46.7)
down()
begin_fill()
lt(113.8)
fd(175.8)
rt(118.4)
fd(4.7)
rt(54.4)
fd(189.4)
rt(124.3)
fd(31.4)
end_fill()


up()
lt(179.3)
fd(48)
down()
begin_fill()
lt(117.8)
fd(176.8)
rt(116.2)
fd(4)
rt(56.5)
fd(189.9)
rt(122.8)
fd(30.9)
end_fill()

up()
lt(179.2)
fd(47.3)
down()
begin_fill()
lt(116.4)
fd(177.3)
rt(122.1)
fd(4.3)
rt(50.4)
fd(191)
rt(124.2)
fd(31.8)
end_fill()
up()
fnt = ('Century Gothic', 54,'bold')
color(RED)
goto(0,-85)
write('new balance',font=fnt,align='center')
hideturtle()

done()

Python Turtle Graphics Drawing - Gigabyte

 Python Turtle Graphics Drawing - Gigabyte Youtube Source code: from turtle import * setup ( 600 , 600 ) color ( '#2D68AE' ) up (...